Security

NIST Releases First 3 Finalized Post-Quantum Encryption Standards

  • NIST has released a final set of encryption tools designed to withstand the attack of a quantum computer.
  • These post-quantum encryption standards secure a wide range of electronic information, from confidential email messages to e-commerce transactions that propel the modern economy.
  • NIST is encouraging computer system administrators to begin transitioning to the new standards as soon as possible.

GAITHERSBURG, Md. — The U.S. Department of Commerce’s National Institute of Standards and Technology (NIST) has finalized its principal set of encryption algorithms designed to withstand cyberattacks from a quantum computer. 

Researchers around the world are racing to build quantum computers that would operate in radically different ways from ordinary computers and could break the current encryption that provides security and privacy for just about everything we do online. The algorithms announced today are specified in the first completed standards from NIST’s post-quantum cryptography (PQC) standardization project, and are ready for immediate use.

The three new standards are built for the future. Quantum computing technology is developing rapidly, and some experts predict that a device with the capability to break current encryption methods could appear within a decade, threatening the security and privacy of individuals, organizations and entire nations. 

“The advancement of quantum computing plays an essential role in reaffirming America’s status as a global technological powerhouse and driving the future of our economic security,” said Deputy Secretary of Commerce Don Graves. “Commerce bureaus are doing their part to ensure U.S. competitiveness in quantum, including the National Institute of Standards and Technology, which is at the forefront of this whole-of-government effort. NIST is providing invaluable expertise to develop innovative solutions to our quantum challenges, including security measures like post-quantum cryptography that organizations can start to implement to secure our post-quantum future. As this decade-long endeavor continues, we look forward to continuing Commerce’s legacy of leadership in this vital space.”

The standards — containing the encryption algorithms’ computer code, instructions for how to implement them, and their intended uses — are the result of an eight-year effort managed by NIST, which has a long history of developing encryption. The agency has rallied the world’s cryptography experts to conceive, submit and then evaluate cryptographic algorithms that could resist the assault of quantum computers. The nascent technology could revolutionize fields from weather forecasting to fundamental physics to drug design, but it carries threats as well. 

“Quantum computing technology could become a force for solving many of society’s most intractable problems, and the new standards represent NIST’s commitment to ensuring it will not simultaneously disrupt our security,” said Under Secretary of Commerce for Standards and Technology and NIST Director Laurie E. Locascio. “These finalized standards are the capstone of NIST’s efforts to safeguard our confidential electronic information.”

Encryption carries a heavy load in modern digitized society. It protects countless electronic secrets, such as the contents of email messages, medical records and photo libraries, as well as information vital to national security. Encrypted data can be sent across public computer networks because it is unreadable to all but its sender and intended recipient. 

Encryption tools rely on complex math problems that conventional computers find difficult or impossible to solve. A sufficiently capable quantum computer, though, would be able to sift through a vast number of potential solutions to these problems very quickly, thereby defeating current encryption. The algorithms NIST has standardized are based on different math problems that would stymie both conventional and quantum computers.

“These finalized standards include instructions for incorporating them into products and encryption systems,” said NIST mathematician Dustin Moody, who heads the PQC standardization project. “We encourage system administrators to start integrating them into their systems immediately, because full integration will take time.”

Moody said that these standards are the primary tools for general encryption and protecting digital signatures. 

This content extract was originally sourced from an external website (National Institute of Standards and Technology (NIST)) and is the copyright of the external website owner. TelecomTV is not responsible for the content of external websites. Legal Notices

Email Newsletters

Sign up to receive TelecomTV's top news and videos, plus exclusive subscriber-only content direct to your inbox.

Subscribe

Cookies

TelecomTV uses cookies and third-party tools to provide functionality, personalise your visit, monitor and improve our content, and show relevant adverts.